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Ⅰ. Introduction

The society has witnessed a rising concern over

fetal health due to the increasing rates of congenital

anomalies which impact to the persisting issue of low

birth rates. Congenital anomalies refer to structural or

functional anomalies in fetuses which potentially

impose challenges on individuals and families[1,2]. The

increase in the incidence of birth defects is associated

with various factors, including inadequate fetal health

management, genetic factors, and an aging population

structure. According to the Korean Statistical

Information Service (KOSTAT) for the year 2021, the

birth rate has decreased by 10.3% comparing to 2020.

This figure, recording a birth rate of 0.81 births per

woman, is notably unprecedented since the KOSTAT

has started compiling birth rate data in 1970[3]. The

KOSTAT has also reported that the estimated

population decline has been advanced from 2032 to

2029[4]. The use of fetal health big data analysis aims

to ensure that healthy childbirth and alleviate any

concerns, even in the case of elder women, by

identifying the presence of potential risk factors

throughout the pregnancy period and offering early

prevention and treatments.

In this paper, we proposed a methodology to

improve the fetal health prediction using sequential

backward selection (SBS) algorithm to seek the

optimal number of features. By using SBS, the

algorithm iteratively removes one feature at a time

to identify the most relevant features for fetal health

prediction. For better classifying performance, K-fold

validation was used after training the dataset with SBS

algorithm to make up suboptimal condition to achieve

w First Author : Yonsei University Bio & Living Engineering of GLC, seokhyunmoon@yonsei.ac.kr, 정회원
° Corresponding Author : Yonsei University Applied Information Engineering of GLC, belle.lee@yonsei.ac.kr, 정회원
논문번호 : 202308-040-C-RN.R1, Received August 10, 2023; Revised October 24, 2023; Accepted November 7, 2023

Research on Improving Fetal Health Prediction Model Using
Optimal Fetal Feature Selection Technique

SeokHyun Moonw, Jongbin Lee°

ABSTRACT

The phenomena of aging society and declining in birth rate have led to an increased interest in research on

predicting fetal health in the field of healthcare. Existing fetal health classification models are actively being

studied to improve the models’ overall predictive performance. However, predicting fetal health requires a

significant number of features and calculations, making rapid and accurate predictions challenging. In this

paper, we proposed a method to enhance the accuracy of the fetal health classification models as well as to

reduce computational time by selecting the appropriate number of features in the predictive system. Firstly,

random resampling method was used to mitigate overfitting caused by data imbalance and normalized the

dataset through robust scaling to handle data outliers. Secondly, sequential backward selection of feature

algorithm was used to select minimal required features and K-fold cross-validation to ensure the models’

accuracy. Using the proposed method, the experimental results achieved 97.2% accuracy, surpassing the results

of latest fetal health prediction models studied.
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the best possible health prediction outcomes. The

proposed methodology has shown improvements in all

areas of performance metrics including accuracy,

compared to the latest research that selected features

based on exploiting correlation coefficient-based

feature reduction technique.

Ⅱ. References

2.1 Light Gradient Boosting Machine
Light Gradient Boosting Machine (LightGBM) is

a variation of the gradient boosting method as well

as a tree-based learning algorithm known for its

distinctive features: Gradient-based One-Side Sampling

(GOSS) and Exclusive Feature Bundling (EFB)[5].

Specifically, LightGBM grows tree leaf-wise, where

trees are split to maximize data loss instead of aiming

for a balanced tree structure. As a result, the tree

levels become deeper and asymmetrical, as depicted

in figure 1, but it minimizes the prediction error loss

more effectively than other boosting algorithms[6].

LightGBM offers advantages in constructing fast and

powerful prediction models for large-scale datasets.

By leveraging the characteristics of gradient boosting

algorithms, LightGBM aims to minimize errors and

maximize prediction performance.

Fig. 1. Leaf-wise tree growth.

2.2 Extra Tree Classifier
The Extra Trees Classifier is one of the ensemble

techniques in a machine learning model that utilizes

the Extremely Randomized Trees (ExtraTrees)

algorithm to perform classification tasks. Extra Trees

Classifier exhibits high performance on various

datasets by randomly selecting features and

performing random splits, enabling faster learning

compared to Random Forests[7]. Moreover, it

possesses the property of preventing overfitting,

allowing for good performance with relatively fewer

hyperparameter tunings.

2.3 Sequential Backward Selection Algorithm
Sequential Backward Selection (SBS) is one of the

feature selection algorithms, where the algorithm

repeatedly trains the model by removing one feature

at a time from the entire feature set after initially

training the model with all features[8]. In the SBS

algorithm, each feature is removed one by one based

on the performance difference in accuracy before and

after the removal, aiming to obtain the model with

the best performance at that point. However, the

overall performance may vary depending on the order

of feature removal which could lead to suboptimal

result and less reliability. Thus, additional validation

process is needed to achieve higher reliability and

optimal performance.

2.4 Dataset
In this study, we used childbirth monitoring device

data provided by the University of California Irvine

(UCI) [9]. The dataset consists of 22 features extracted

from Cardiotocograms (CTG) examinations, including

fetal heart rate, fetal movement, uterine contractions,

abnormal short-term variability, and the average value

of short-term variability, as shown in table 1. The

sample size in the dataset is 2126 and are classified

into three categories: normal, suspicious, and

pathological cases of fetuses (1, 2, 3) as shown in

table 2. The categorical data in CTG dataset are in

numerical values but data normalization is required

for better predicting performance due to the ranges

in data across features.

1 ‘baseline value’

2 ‘accelerations’

3 ‘fetal movement’

4 ‘uterine contractions’

5 ‘light decelerations’

6 ‘severe decelerations’

7 ‘prolongued decelerations’

8 ‘abnormal short term variability’

9 ‘mean value of short term variability’

Table 1. Features of CTG dataset.
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Normal Suspicious Pathological Total

1655 295 176 2126

Table 2. Distribution of fetal health classification classes.

Ⅲ. Proposed Fetal Health Prediction 
Model 

3.1 Data Imbalance
As shown in figure 2, the number of fetuses

classified as normal is 1655, suspicious cases are 295,

and pathological cases are 175 which shows a

significant data imbalance in the dataset [10]. The data

imbalance among different classes can lead to

overfitting on the training dataset, resulting in high

accuracy with only training sets but poor predictive

performance on test sets. Thus, the aim is to fix the

data imbalance problem among the datasets presented

in table 2 to achieve more balanced and reliable

classification results.

In this paper, random resampling technique was

applied to improve the imbalanced distribution of

datasets[11]. Random resampling is a method that

generates a new version of the training dataset with

a different class distribution from the existing

imbalanced classes to reduce the difference in sample

numbers between majority and minority classes.

Within random resampling, there are two types of

technique to resolve data imbalance: under-sampling

and over-sampling. As in figure 3, under-sampling

involves removing samples from the majority class at

a predefined interval to balance the class distribution

and over-sampling increases the number of samples

in the minority class by randomly duplicating data

from the majority class at a predefined interval or by

creating duplicate instances of the minority class data[12].

In this paper, the distribution of the normal class

was under-sampled by an amount equal to the sum

of suspicious and pathological classes. Specifically,

the samples from the normal fetus class were

randomly selected and removed, resulting a total of

471 samples in normal fetus class. The suspicious and

pathological fetus classes had fewer samples

compared to the normal fetus class. Thus,

over-sampling was performed to generate samples

equal to the number of samples in the normal fetus

class. As shown in table 3, all classes' datasets were

balanced to have exactly 471 samples each to

overcome the issue of overfitting that could arise due

to the data imbalance.

Normal Suspicious Pathological Total

471 471 471 1413

Table 3. Fetal health class distribution after random
resampling.

Fig. 2. Distribution of fetal health classification classes

Fig. 3. Under-sampling and over-sampling.

10
‘percentage of time with abnormal long term
variability’

11 ‘mean value of long term variability’

12 ‘histogram width’

13 ‘histogram min’

14 ‘histogram max’

15 ‘histogram number of peaks’

16 ‘histogram number of zeroes’

17 ‘histogram mode’

18 ‘histogram mean’

19 ‘histogram median’

20 ‘histogram variance’

21 ‘histogram tendency’

22 ‘fetal health’
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3.2 Data Normalization
In this paper, after fixing the data imbalance, 80%

of the dataset was divided to training dataset and the

rest of 20% to test dataset. However, due to the large

ranges of values in the samples across the features,

the data was normalized using the robust scaler

technique to prevent performance degradation [13]. The

robust scaler uses the median and Interquartile Range

(IQR) of the data to normalize each data point by

subtracting the median from each data point and

dividing it by the IQR as shown in equation (1).

Additionally, robust scaler is less affected by outlier

values compared to other normalization techniques,

making it an optimal normalization method for

datasets with many outliers. Thus, CTG dataset was

scaled with robust scaler to preserve the overall shape

and characteristics of the data which accurately

reflected and preserved the distribution of the original

dataset.

(1)

where x, x_med, and Qi stands for data point, median

of the dataset, i-th quartile respectively.

3.3 Analysis of Sequential Backward 
Selection with K-fold validation

In this paper, we employed SBS feature selection

algorithm with LightGBM model to select the

necessary numbers of features for fetal health

prediction. The SBS algorithm iteratively removes one

feature at a time to obtain the optimal subset of

features. The results from training the LightGBM

model, as shown in figure 4, indicate that the accuracy

of the model increases when the number of features

is reduced from approximately 21 to 10. However,

at 10 features, the accuracy decreases until 8 features

and increases again to a level close to 10 features at

7 features. When reducing the number of features to

5 or below, there is a sharp average decline of about

2.5% in accuracy, leading to the exclusion of 5 or

below features from the feature selection process.

Considering accuracy alone, the optimal number of

features appear to be 10, 7, and 6. At 10 features,

the accuracy is 98.59%, showing a marginal

difference of 0.36% compared to 7 features. However,

the processing time in the feature with 10 was 13.1801

seconds, which is approximately 2.57 times longer

than 5.124 seconds in the 7 features. The model with

7 features is more computationally efficient with only

at least accuracy loss . Thus, we can say the optimal

number of features to 7 for computational time and

concrete accuracy.

In this paper, we used K-fold validation to

overcome the issue of SBS algorithm not selecting

the overall optimal feature set based on the order of

feature removal. K-fold validation divides the data

into K subsets, or folds, and iteratively trains and

evaluates the model multiple times to average the

performance. K-fold validation was employed where

the dataset was divided to 10 different folds, enabling

the LightGBM model to be trained and evaluated 10

Fig. 4. Prediction result of accuracy vs. number of
features

No of
features

Accuracy
Total Execution

time (s)

1 0.6572 0.2470

2 0.9081 0.6165

3 0.9258 1.1363

4 0.9576 1.8488

5 0.9576 2.7591

6 0.9753 3.8310

7 0.9823 5.1240

8 0.9788 6.6458

9 0.9823 8.3943

10 0.9859 13.1801

Table 4. Accuracy and Execution Time with Different
Number of Features
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times. In each iteration, one fold was used as the

validation set, while the remaining nine folds were

used as the training set to train the model. The

accuracy obtained from the 10 iterations was then

averaged to calculate the final performance, as shown

in table 5.

Ⅳ. Experimental Results

4.1 Proposed Framework of the Model
In this paper, the proposed fetal health prediction

model’s framework is demonstrated as depicted in

figure 5. From the fetal health dataset, the data were

pre-processed through random sampling to fix data

imbalance and normalized by robust scaling method.

Then 80% of the data was divided to training and

the rest of 20% to test set. From the training set,

sequential backward selection feature algorithm was

used to select the important number of features to

ensure best accuracy for machine learning models.

The K-Fold cross validation was used for training and

testing the classifier performance. Overall, the

machine learning model was tested through test set

and evaluated the model’s performance through

confusion matrix.

4.2 Confusion Matrix and Model Evaluation
The confusion matrix presents the comparison

between the model's predicted results and the actual

class labels, categorizing them into True Positive

(TP), True Negative (TN), False Positive (FP), and

False Negative (FN), as shown in figure 6. It is

observed that the number of correctly classified

samples for the normal, suspicious, and pathological

classes is 89, 92, and 94, respectively, while a total

of 8 samples were misclassified.

Using this confusion matrix, the model's

performance can be evaluated and compared using

metrics such as accuracy, precision, recall, and F1

Score. Among these classification evaluation metrics,

accuracy is calculated by dividing the number of

correctly classified samples by the total number of

samples, as shown in equation (2). Recall, on the other

hand, measures the proportion of correctly predicted

positive observations among all positive observations

in the actual class, as calculated in equation (3).

Precision is the ratio of correctly predicted positive

Fig. 5 Proposed framework of the fetal health model

No of folds Accuracy

Fold 1 0.92

Fold 2 0.96

Fold 3 0.92

Fold 4 0.92

Fold 5 0.92

Fold 6 0.92

Fold 7 0.96

Fold 8 0.97

Fold 9 0.96

Fold 10 0.96

Average 0.94

Table 5. Accuracy of K-fold validation with LightGBM

Fig. 6. Confusion matrix of LightGBM.
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observations to the total predicted positive

observations, as shown in equation (4). Lastly, the F1

Score is the weighted average of precision and recall,

calculated according to equation (5).

By utilizing these classification evaluation metrics,

the model's performance can be evaluated and

analyzed, providing valuable insights into its

classification performance for each model.

(2)

(3)

(4)

(5)

4.3 Experimental Results
This paper compared and analyzed the results of

fetal health prediction models using LightGBM with

SBS proposed and without. At comparison evaluation

in table 6, four classification metrics such as accuracy,

precision, recall, and F1 Score, were used to evaluate

the effectiveness of these models.

Based on the results in table 6, Proposed model

can achieve better performance with an accuracy of

97.2%, recall of 0.972%, precision of 0.972% and F1

of 97.2% comparing to conventional model in

predicting fetal health.

Model Accuracy Recall Precision F1

LightGBM
with SBS

0.972 0.972 0.972 0.972

LightGBM
without SBS

0.958 0.958 0.959 0.958

Table 6. Comparison of evaluation metrics with models.

Model Accuracy Recall Precision F1

LightGBM
with SBS

0.972 0.972 0.972 0.972

Extre Tree 0.967 0.967 0.970 0.968

Table 7. Comparison of evaluation metrics

Furthermore, when comparing the results of this

study with the research on the extra tree model [14],

all four classification evaluation metrics have been

improved as shown in table 7.

Ⅴ. Conclusions 

In the paper, proposed framework of the fetal

health prediction can improve computational time and

classification accuracy by selecting optimal number

of features in SBS algorithm with K-fold validation.

In the proposal, the data obtained from

Cardiotocograms (CTG) examinations was used. At

first stage as data pre-processing, we applied random

resampling to resolve the data imbalance problem in

three classes. Specifically, Under and over-sampling

for the normal fetus class and for the suspicious and

pathological fetus classes can prevent overfitting and

data loss problem caused by imbalanced data

distribution. Secondly, the data was normalized using

the robust scaler to ensure accurate results and to

preserve the overall structure and characteristics of the

data while performing scaling. Lastly, SBS algorithm

and K-folder cross validation were proposed to

enhance the accuracy and reliability by selecting the

optimal number of features through removing one by

one procedure of SBS method. It has been simulated

with five different ML models, and the results

indicated that the LightGBM model showed the best

performance according to the confusion metrics and

model evaluation.

This proposed research holds the potential to detect

early signs of fetal health risks during pregnancy and

provide timely information for necessary treatments,

thereby reducing the occurrence of congenital

abnormalities and fetal mortality rates.
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